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ABSTRACT: Earlier work, which reported relationships between compression properties and elevated tem-

perature aging times and weight losses, also pointed out the apparent influence of surface layer formation and

growth on the retention of compression properties during extended aging times. Since that time, studies have
been directed toward evaluating the growth of the surface layer. This layer was found to change in its composi-

tion and features as the aging temperature changed. Microcracks and small voids initiated and advanced inward

at all temperatures. Visible oxidation at the surface occurred only at temperatures above 260 °C. Relationships

between layer thickness and aging time and temperature were evaluated and empirically formulated. Then, the

compression properties were graphically related to the surface layer thickness with excellent correlation. The

surface layer was observed to influence the compression strength of thin samples only.

1 INTRODUCTION

Programs are under way at the NASA Lewis Research

Center to develop advanced propulsion systems for

21st century aircraft. To do this, it is necessary to

develop predictive models that describe the durability

of polymer matrix composite structural propulsion

components under extreme ambient conditions.

This paper is aimed toward developing an engineering-

based description of the thermal and mechanical

durability of graphite-fabric-reinforced, polyimide,

PMR-15 composites at temperatures ranging from
204 to 343 °C. Aging times reached 26,300 h for

specimens aged at 204 °C. Particular attention was

given to those chemically induced physical changes
that have the most influence on the degradation of com-

pression properties. Results were evaluated by the

(1) thermal oxidative stability (TOS) of the compos-

ite, (2) composite compression properties, and (3)

microstructural changes.

2 MATERIALS

The material that was studied was PMR-15 reinforced

with T650-35, 24 by 23, 8 harness satin-weave graph-

ite fiber fabric. The aged specimens measured about

11- by 9-cm in length and width and were either 4, 8,

or 20 plies thick. These dimensions were chosen to

provide nominal cut-edge to total-surface-area percent-

ages of 3, 5, and 12 percent, where the total surface
area consisted of both cut and molded surfaces. The
molded surfaces were those that were in contact with

the metal mold or vacuum bag during the curing proc-

ess. The materials were processed at GE Aircraft

Engines, Inc., in Evendale, Ohio.

3 TESTING

The composite materials used were aged in air-

circulating ovens at temperatures of 204, 260, 288,
316, and 343 °C, and an air flow maintained at 100

cm3/min. The laminates were removed periodically,

allowed to cool in a desiccator, weighed, and either

returned to the oven or permanently removed for test-

ing. The aging time was considered to be complete

when the weight loss exceeded 10 percent.

All specimens were conditioned at 125 °C for 16

h before compression tests were conducted. The

compression tests were performed as specified in

Test Method for Compressive Properties of Rigid
Plastics (ASTM D-695M), with a cross-head speed

of 1.2 mm/min, a temperature of 23.3 °C, and a rela-

tive humidity of 50 percent. No end tabs were used.
Strain was meas-ured with an extensometer, and

moduli were measured using strains and loads at

500 and 1500 microstrain. Surface layer thicknesses

were measured from photomicrographs of sectioned

specimens.
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Figure 1. Compression strength of T650-35/PMR-15
composite specimens as a function of aging time at
various temperatures. Number of plies, 20.
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Figure 2. Compression modulus of T650-35/PMR-15
composite specimens as a function of aging time at
various temperatures. Number of plies, 20.
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4 RESULTS

Selected specimens were removed from the aging

ovens for compression testing at different times during

the aging periods. Figures 1-2 (from Bowles et al. 1995)

show strengths and moduli, respectively, of the 20-ply

specimens plotted against aging time. When the ordinate

variable is aging time, the relationships all appear to be

separate linear curves with a different slope for each tem-

perature. However, the data from the 204 and 260 °C

tests appear to be identical. When percent weight loss is

the independent variable, all the data except that of the

specimens aged at 204 °C appear to collapse onto a single

curve with the relationship In S c = 4.614 - 10.259

x 10 -2 w, where S c is the compression strength in MN/m 2

and w is the percent weight loss. Neither of these two

relationships, percent weight loss or aging time, produce

one weight loss curve that accommodates the data at all

the temperatures that were studied. The data from Fig-

ure 1 indicate that the PMR-15 composite material will

not retain its strength very long at temperatures over

260 °C. The initial moduli values appear to be retained

for longer periods at the lower temperatures (Fig. 2).
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Figure 3. Weight loss of T650-35/PMR-15 composites as a
function of aging time at 316 °C.
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Figure 4. Microcrack and oxidation layer growth during
isothermal aging

As mentioned in the MATERIALS section, the

fabric-reinforced composites had two types of surfaces.

For these tests, the majority of surface area was com-

posed of a resin-rich molded surface that was in

contact with the autoclave bagging material during the

processing phase. The cut edges, which contained fiber

ends and axial fiber surfaces, comprised the second

type of surface. Previous studies showed that weight

loss rates are different for these two types of surfaces

(Bowles & Meyers 1986). This can be illustrated by

the typical weight-loss versus aging-time plot (at

316 °C) shown in Figure 3. The plot can be broken
into three distinct sections:

(1) The origin to point A shows a rapid weight loss

that is proportional to the specimen volume.

(2) Point A to B shows a linear weight loss rate.

(3) After point B, the weight loss rate is accelerated

because of cracking and exposed fiber oxidation,

mainly along cut surfaces.

Figure 4 shows a schematic of the surface damage

growth during this period. The depth of cut surface

damage increased with increasing specimen thickness.

Because of this, weight loss data cannot be compared

for specimens of different thicknesses. Also, weight

losses from cut surfaces exceed those from molded

surfaces (Bowles & Kamvouris 1995).
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Figure6. Adjustedweight loss of composites at 316 °C.
Number of plies,8.

Figure5. Surfaceoxidationof T650-35/PMR-15 composite
specimensaged inair. (a) Aged 1000 h at 316 °C.
(b)Aged 10,000 h at 204 °C.

Two different types of surface degradation occur in

these composites. Aging at the higher temperatures

(288 to 316 °C) produces a light-colored surface layer

that grows inward and causes voids and microcracks

to initiate and grow within the layer, as in Figure 5a.

The light color is attributed to the formation of solid

oxidation products at the higher temperatures. At the

lower temperatures (Fig. 5b), specimens show the same
advance of voids and microcracks into the surface, but

the oxidized light band of matrix material is not

visible. The two degradation mechanisms that are

operating during isothermal aging are surface oxida-

tion and bulk thermal degradation. Results of com-

pression testing of composite layers that were
machined parallel to the molded surface layer show

that after aging was completed at 204 °C for 26,300 h

the compression strength of the visibly damaged layer

was one half that of the apparently less damaged cen-
tral core material. This leads one to believe that the

growth of the cracked surface layer contributes to the

degradation of the mechanical properties of PMR-15

composite material.
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Figure 7. Surfacelayerthickness as a function of agingtime
at varioustemperatures.

Because the measured weight loss includes the cut-

edge weight loss, it does not represent the material
that was machined into the compression test speci-

mens. Consequently, an estimate of the cut-edge

weight loss was determined. Cut edges were trimmed

off some of the aged 11- by 9-cm panels. These pieces
were dried and weighed, and their dimensions were

measured with calipers. The density of the central piece

and each edge piece was calculated and compared with

the calculated densities of the pristine laminate, and

new (adjusted) percent weight loss values were calcu-

lated from the changes in densities. A sample of the

results are shown in Figure 6. These data appear to lie

on or near an extrapolated extension of the AB section

of the weight loss curve, showing that the actual weight
loss is much less than that measured during the iso-
thermal oven tests. It is obvious that another means of

evaluating composite damage should be investigated.
The thickness of the surface layer grows during the

isothermal aging time. Figure 7 shows the relation-

ship between the thickness of the resin-rich surface

damage layer and the aging time at all temperatures.
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Figure 8. Composite compression strength as a function of

surface layer thickness at various temperatures. Number
of plies, 4.
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Figure 11. Compression modulus as a function of surface

layer thickness at various temperatures. Number of

plies, 4.
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Figure 9. Composite compression strength as a function of

surface layer thickness at various temperatures. Number

of plies, 8.
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Figure 12. Compression modulus of composites as a

function of surface layer thickness at various tempera-

tures. Number of plies, 8.
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Figure 10. Composite compression strength as a function of

surface layer thickness at various temperatures. Number

of plies, 20.
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Figure 13. Composite compression modulus as a function
of surface layer thickness at various temperatures.

Number of plies, 20.
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Therelationshipsappearto be linearat all five tem-
peratures,with slower growth rates at the lower
temperatures.Thedatafrom thetwo lower tempera-
turetestsindicatewhatmaybean initial fast rateof
growth andthena slowersteadyrateafter 1000h of
aging.Thismaybenormalscatter,however.Oneitem
of interestis thattheselinearcurvesappearsimilar to
thecompressionstrengthcurvesin Figure1.

Figures8-10presentcompressionstrength,plotted
asafunctionof the layerthicknessof thecompositeat
varioustemperatures.Eachfigurecontainsdatafor one
specimenthickness:1.50,2.77,or 6.78mm (4, 8, or
20 plies).All thedatafor thetwo thicker specimens
(Figs9-10) fall on onecurve.The calculated,"best
fit" setof dataincludedinFigures9-10 isconsistently
closetothemeasuredvalues.Forspecimensmachined
paralleltothemoldedsurfacesof large specimens, the

inner, crack-free material decreased in strength by a

considerable amount (as much as 50 percent). The

measured strength of the core material was close to

that of an aged specimen with surface degradation and
the same thickness. These data indicate that the for-

mation and growth of the surface layer does not

significantly reduce the compression properties of 8-

and 12-ply fabric-reinforced composites. This was not

so for the thinnest specimens. It is evident in Figure 8
that the 316 °C data fell below those of lower tem-

perature compression strengths. This is due to the larger

percentage of the weaker oxidation layers at the outer

surfaces. Figures 11-13 show the moduli as a func-

tion of the layer thickness. In Figures 12-13, the modu-

lus data collapsed onto one linear curve.
The relationship between specimen thickness and

the retention of compression properties is evident in

these figures. The 8- and 20-ply specimens retained
their moduli considerably longer than the 4-ply com-

posite. One other fact to acknowledge is that the

moduli of the 8-ply composite material did not

decrease by more than 30 percent over the time stud-

ied for aging at temperatures below 288 °C. Struc-

tures that are stiffness dependent should be useable
for tens of thousands of hours.

graphite-fiber-fabric/PMR-15 composites and the

depth of the surface layer that develops and grows

during periods of aging at elevated temperatures. The

buildup of the surface layer is indicative of the physi-
cal condition of the fabric-reinforced PMR-15 com-

posites at all temperatures that were studied. However,
although the surface layer is indicative of the decrease

in strength, the central core volume is the main
contributor.

Specimen thickness is a significant factor in the
deterioration of compression properties during such

periods of exposure. It is apparent from Figures 8-10
that the influence of the surface layer diminishes as

the composite thickness increases. This is especially

apparent in Figure 8. The strength data from the 4-ply

specimens aged at 316 °C are below those measured

at the other three temperatures. As noted earlier, the

surface layer for a specimen aged at 316 °C had a

compression strength about half that of the core mate-
rial after aging at 204 °C for 26,300 h. Thus, for

specimens that had a significant amount of oxidative

attack in the surface layer, thinner specimens should

show lower strengths than those aged at lower tem-

peratures. That is what we see in Figure 8. Two deleteri-
ous mechanisms are observed within the specimens:

surface oxidation and core reactions.
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5 SUMMARY AND CONCLUSIONS

The results of this study indicate that simple, linear rela-

tionships exist between the compression properties of
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